Nota: Não há tradução disponível.
LAM PA CHI RIVER BASIN (THAILAND)

Hydrology

GROUNDWATER AQUIFERS 

Table: Aquifers in the basin

Name Age

Area (km2)

Metamorphic aquifer Cambrian to Devonian

133.9

Granitic aquifers Cretaceous

810.2

Carbonate aquifer Ordovician

3.7

Carbonate aquifer Permian

28.7

Metasediment aquifer Permian to Carboniferous

978.6

Metamorphic aquifer unknown

233.8

Colluvial aquifer upper Tertiary to Quaternary

384.3

 

Aquifers in the basin were dated from Cambrian to Quaternary periods. The Metasediment aquifers in Permian to Carboniferous periods share the largest areas and the aquifers formed in Ordovician period are smallest. The granitic aquifers and colluvial aquifers have good quality while the water quality of Carbonate aquifers is moderate and the water quality of metamorphic aquifers is suitable for domestic use (Department of Water Resources, Thai MONRE).

The main channel is 130 km long and it has its headwaters in the western and southern mountain range draining the basin in a South-North orientation before meeting the Thai Khoei river. Streamflow responds accordingly to the precipitation pattern showing two main seasons: a wet and a dry season. According to monthly data available at the most downstream discharge station (k.62) the highest discharge occurs in October with an average value of 56 m³/s while the driest months are from January until March with less than 3 m³/s of streamflow in average. The ratio between the highest and the lowest streamflow is 25:1 showing a high intra-annual variability. Furthermore, two of the most relevant environmental problems in the basins are related with the response of the streamflow during the two abovementioned seasons: (i) flooding during the wet season and (ii) water scarcity during the dry period. 

 

References and further reading:

Chanket, U., Mongkolsawat, C. (2009) An analysis of multi-temporal satellite data for land cover change and its impact on soil erosion over the upper namphong watershed, Northeast Thailand. 30th Asian Conference on Remote Sensing 2009, ACRS 2009, Beijing.

Henderson, G. S., Rouysungnern, S. (1985) Erosion and sedimentation in Thailand." Symposium on effects of forest land use on erosion and slope stability, 1984, Honolulu: 31-39.

Ishikawa, R. et al. (2006) Genetic erosion from modern varieties into traditional upland rice cultivars (Oryza sativa L.) in Northern Thailand, Genetic Resources and Crop Evolution 53(2): 245-252.

Jantawat, S. (1985) An overview of soil erosion and sedimentation in Thailand, Soil erosion and conservation: 10-14.

Krishna Bahadur, K. C. (2009) Mapping soil erosion susceptibility using remote sensing and GIS: A case of the Upper Nam Wa Watershed, Nan Province, Thailand, Environmental Geology 57(3): 695-705.

Lal, R. (2001) Soil degradation by erosion, Land Degradation and Development 12(6): 519-539.

LDD (2000) Soil Erosion in Thailand. Land Development Department, Ministry of Agriculture and cooperatives.

Meier, G., Zumbroich, T., Roehrig, J. (2013) Hydromorphological assessment as a tool for river basin management: The German field survey method, Journal of Natural Resources and Development 3: 14-26.

Morgan, R. P. C. (2009) Soil Erosion and Conservation, Wiley.

Morgan, R. P. C., Morgan, D. D. V., Finney, H. J. (1984) A predictive model for the assessment of soil erosion risk, Journal of Agricultural Engineering Research 30(C): 245-253.

Nontananandh , S., Changnoi, B. (2012) Internet GIS, based on USLE modeling, for assessment of soil erosion in Songkhram watershed, Northeastern of Thailand, Kasetsart Journal - Natural Science 46(2): 272-282.

Paiboonsak, S., Chanket, U., Mongkolsawat, C., Yommaraka, B., Wattanakit, N. (2005) Spatial modeling for soil erosion risk in upper Chi basin, Northeast Thailand, 26th Asian Conference on Remote Sensing, ACRS 2005 and 2nd Asian Space Conference, ASC, Ha Noi.

Paiboonvorachat, C., Oyana, T. J.  (2011) Land-cover changes and potential impacts on soil erosion in the nan watershed, Thailand, International Journal of Remote Sensing 32(21): 6587-6609.

Pensuk, A., Shrestha, R. P. (2010) GIS application for assessing the effects of land use change on surface runoff and soil erosion in phatthalung watershed, Southern Thailand, 31st Asian Conference on Remote Sensing 2010, ACRS 2010, Hanoi.

Plangoen, P., Babel, M. S., Clemente, R. S., Shrestha, S., Tripathi, N. K. (2013) Simulating the impact of future land use and climate change on soil erosion and deposition in the Mae Nam Nan sub-catchment, Thailand, Sustainability (Switzerland) 5(8): 3244-3274.

Renard, K. G., Foster, G. A., Weesies, G. A., McCool, D. K., Yoder, D. C. (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), USDA Agriculture Handbook, Agricultural Research Service (USDA) 703: 404 pp.

Sang-Arun, J., Mihara, M., Horaguchi, Y., Yamaji, E. (2006) Soil erosion and participatory remediation strategy for bench terraces in northern Thailand, Catena 65(3): 258-264.

Shrestha, D. P., Suriyaprasit, M., Prachansri, S. (2014) Assessing soil erosion in inaccessible mountainous areas in the tropics: The use of land cover and topographic parameters in a case study in Thailand, Catena 121: 40-52.

Sriboonlue, V., Trelo-Ges, V., Pilawut, S., Khetkratok, N. (2004) Crop furrow erosion assessment in field crop plots in northeast Thailand, Transactions of the American Society of Agricultural Engineers 47(2): 419-425.

Sthiannopkao, S., Takizawa, S., Homewong, J., Wirojanagud, W. (2007) Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand, Environment International 33(5): 706-711.

Turkelboom, F., Poesen, J., Ohler, I., Ongprasert, S. (1999) Reassessment of tillage erosion rates by manual tillage on steep slopes in northern Thailand, Soil and Tillage Research 51(3-4): 245-259.

Turkelboom, F., Poesen, J., Ohler, I., Van Keer, K., Ongprasert, S., Vlassak, K. (1997) Assessment of tillage erosion rates on steep slopes in northern Thailand Catena 29(1): 29-44.

Turkelboom, F., Poesen, J., Trébuil, G. (2008) The multiple land degradation effects caused by land-use intensification in tropical steeplands: A catchment study from northern Thailand, Catena 75(1): 102-116.

Weterings, R. (2011) A GIS-based assessment of threats to the natural environment on Koh Tao, Thailand, Kasetsart Journal - Natural Science 45(4): 743-755.

Wijitkosum, S. (2012) Impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand, Soil and Water Research 7(1): 10-17.

Wischmeier, W. H., Smith, D. D. (1978) Predicting Rainfall Erosion Losses - A Guide to Conservation Planning, 1st ed, Agriculture Handbook, ARS & USDA: 69 pp.

Ziegler, A. D., Giambelluca, T. W. (1997) Simulation of runoff and erosion on mountainous roads in northern Thailand: A first look, Proceedings of the 1997 5th Scientific Assembly of the International Association of Hydrological Sciences, IAHS, Wallingford, United Kingdom Rabat, Morocco, IAHS Press.

Ziegler, A. D., Giambelluca, T. W., Sutherland, R. A. (2001) Erosion prediction on unpaved mountain roads in northern Thailand: Validation of dynamic erodibility modelling using KINEROS2, Hydrological Processes 15(3): 337-358.

Ziegler, A. D., Giambelluca, T. W., Sutherland, R. A. (2001) Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand, Geomorphology 41(4): 249-262.

FaLang translation system by Faboba